
Lucullus®, Securecell’s process information management system, allows for the automation of
complex bioprocess operations and online calculations of performance metrics. Some advanced
mathematical analyses surpass the capabilities of Lucullus®. In such cases, users require a
simple and robust interface, which allows for communication between Lucullus® and the appli-
cations that fulfill their more specific needs for advanced data handling. The Lucullus® REST API
interface meets these requirements, offering a seamless data exchange capability within a local
network or over the internet. In this application note, we demonstrate how users can use the
Lucullus® REST API interface for their applications to automate data analysis and process con-
trol tasks. Even though the given examples are all implemented in Python, they are easily
transferrable to other popular coding languages such as MATLAB, C, or R.

The importance of interconnectivity
The transformation of biopharmaceutical manufacturing towards Bioprocessing 4.0 production
concepts is challenging and involves integrating intensified, continuous, predictive, and autono-
mous operations. Key elements of Bioprocessing 4.0 are process automation, digitalization, and
interconnection, leaving behind paper-based procedures, data silos, manual process control, and
equipment, as well as software that cannot communicate with each other. In the last years, more
and more processes and workflows in bioprocessing environments have been automated, digi-
talized, and interconnected. Nonetheless, end-to-end integration of processes and workflows is
still the exception. The establishment of integrated platforms depends on the commitment of man-
agers to invest in IT infrastructure and the acceptance of users to adapt to new technologies.

ADVANCED BIOPROCESS
MONITORING AND CONTROL VIA THE
LUCULLUS® REST API INTERFACE
Written by Stefan Hauer, ZHAW (hatr@zhaw.ch) and
Pascal Vonlanthen, Securecell AG (pascal.vonlanthen@securecell.ch)

A P P L I C A T I O N N O T E
February 2024

securecell.ch

mailto:hatr@zhaw.ch
mailto:pascal.vonlanthen@securecell.ch
http://securecell.ch

The Lucullus® process information management system is a software platform that integrates
devices and enables data exchange across devices, laboratories, and enterprises, and there-
fore, serves as the glue among all the applications (Figure 1). Lucullus® supports all aspects of
Bioprocessing 4.0 production concepts, enabling process automation, digitalization, and in-
terconnection. Process data can be seamlessly transferred from the Lucullus® database to
electronic laboratory notebooks (ELNs), manufacturing execution systems (MESs), or advanced
data analysis tools (Phyton, MATLAB, R, DataHowLab, to mention just a few) by leveraging stan-
dardized communication protocols such as OPC or REST interfaces.

In this application note, we present a specific example of an interconnected bioprocessing ecosys-
tem at the Zurich University of Applied Sciences (ZHAW) in Wädenswil. The interconnection of bio-
reactor controllers, in-line, on-line, and at-line analytical devices, and software leveraging the Lu-
cullus® REST API interface enables uninterrupted and automated data acquisition and analysis.
The described bioprocess at ZHAW is characterized by complete information transparency.

Basic principle of the REST API
REST API (also known as RESTful API) is the short form for Representational State Transfer
Application Programming Interface (Gupta, 2023; RedHat, 2020). The REST API is an interface
that enables data exchange between software via the web. In its most simple form, a user en-
ters a request by specifying a URL (Uniform Resource Locator) for example https://wikipedia.
org/wiki/Uniform_Resource_Locator. In return, they receive the information at the specified
location in text form, for instance, as a JSON (JavaScript Object Notation) file. To access infor-
mation specifically from the Lucullus® database, the user builds a URL consisting of the IP ad-
dress, the type of information of interest, and further specifications (Figure 2).

 Base IP + Resource + Attributes
 http:// 192.1.1.1:8080/lpims/rest/v1/reactors

Figure 2: REST API request consisting of Base IP + Resource prompting all bioreactors integrated in the Lucullus®
process information management software (LPIMS).

A P P L I C A T I O N N O T E
February 2024

Figure 1: Lucullus® integrates more than 100 different devices and device models found in typical bioprocessing environments. (A) The devices
come in a vast variety of versions, with different proprietary interfaces, and sometimes mismatching or old-fashioned technology which makes
their integration a challenging task. Their integration into Lucullus® is realized by device-specific driver development or integration via so-called
standard interfaces. (B) Through OPC or REST interfaces, Lucullus® also enables the transfer of the harmonized and structured data from the
Lucullus® database to the respective customer-specific software solutions.

securecell.ch

A

B

http://securecell.ch

A P P L I C A T I O N N O T E
February 2024

For instance, to retrieve a list of all reactors with actively running processes, one would create a
URL with the resource “reactors” and specify the attribute “running” as “true”. A simple way to
send such requests would be through the web browser, assuming the user is on the same net-
work as the Lucullus® server (Figure 3).

 IP address = http:// 192.1.1.1:8080/lpims/rest/v1/
 reactors?running=true

Figure 3: REST API request consisting of Base IP + Resource + Attributes prompting all running bioreactors integrated in the
Lucullus® process information management software (LPIMS).

HTTP/HTTPS requests can be done just as easily with the “requests” library in Python. The fol-
lowing code snippet shows how this could be implemented in just a few lines. After retrieving
the information for all reactors with actively running processes, the data can be further pro-
cessed, for instance, to retrieve the process names:

import requests

auth = ("user", "password")
response = requests.get(
 "http://192.1.1.1:8080/lpims/rest/v1/reactors?running=true",
 auth=auth
)
process_names = [
 x["process"]["name"]
 for x in response.json()["data"]
]
process_ids = [
 x["process"]["id"]
 for x in response.json()["data"]
]
print(process_names)
print(process_ids)

Code 1: Code snippet with the “requests” library in Python retrieving the process name and process ID of all running bioreactors
integrated in the Lucullus® process information management software (LPIMS).

Another common task might be to retrieve the current port values during a running process. In
the following code example, this is achieved in two steps:

1. Retrieve the identifier of the ports based on their name
2. Retrieve the current values of those ports from the specified reactor

securecell.ch

http://securecell.ch

A P P L I C A T I O N N O T E
February 2024

import requests

port_names = ["pO2", "Temperature"]
port_ids = []

for p in port_names:
 response = requests.get(
 ("http://192.1.1.1:8080/lpims/rest/v1/"
 + "ports?name={}".format(p)),
 auth=auth
)
 id = response.json()["data"][0]["id"]
 port_ids.append(id)

link = (
 "http://192.1.1.1:8080/lpims/rest/v1/reactors/"
 + reactor_name
 + "?currentValues="
 + ",".join(port_ids),
)
response = requests.get(
 link, auth=auth
)
current_values = response.json()["data"]["process"]["currentValues"]
print(current_values)

Code 2: Code snippet with the “requests” library in Python retrieving the current port values of bioreactors integrated in the
Lucullus® process information management software (LPIMS).

Finally, users would like to not only retrieve process data but also change setpoints during a running
process. Note that this is only possible for ports that are set to “Output” in the System Administra-
tion tool of Lucullus®, are logged by default, and belong either to a hardware or logical device.

link = (
 "http://192.1.1.1:8080/lpims/rest/v1/"
 + "signals?"
 + "portId={}".format(process_ID)
 + ",processId={}".format(port_ID)
)
response = requests.get(
 link,
 auth=auth
)
signal_id = response.json()["data"][0]["id"]
signal_id = response.json()["data"][0]["id"]

Code 3: Code snippet with the “requests” library in Python retrieving the signal ID of a port where the value will be changed.

securecell.ch

http://securecell.ch

A P P L I C A T I O N N O T E
February 2024

After having successfully retrieved the signal ID of the port to be changed, the “put” command
of the “requests” library can be used to set the current value to 300:

link = ''http://191.1.1.1:8080/lpims/rest/v1/signals/{}''.format(signal_id)
headers={''Content-Type'': ''application/json''}
response = requests.put(
 link,
 data=json.dumps({''currentValue'': 300}),
 auth=auth,
 headers=headers
)

Code 4: Code snippet with the “requests” library in Python changing the port value of the port with the retrieved signal ID to 300.

Process control via the REST API
Although the provided code examples are exclusively written in Python, data could be ex-
changed between Lucullus® and any software of preference as long as the software supports
the transmission of HTTP/HTTPS requests. In the following section, we will show how to use
data transfer based on the Lucullus® REST API for process control.

Figure 4: Advanced process monitoring and control principle. (A) The general process control principle includes the following points that are
sequentially repeated: Measuring of CPPs, deciding based on process knowledge on the CPPs adjustments, and acting by adjusting respective
CPPs. (B) The general process control principle is the framework for a general structure to send and retrieve data between Lucullus® and a
programmed code: Collect port data, perform calculations to analyze the process state, and update ports based on collected/calculated data.

Any form of process control follows a general process control principle (Figure 4A):

1. Measurement: Critical process parameters (CPPs) are measured
either in-line, on-line or at-line

2. Decision: Based on current and historical process data and expert
knowledge, a decision to modulate a CCP is taken

3. Action: The CPP is adjusted. Afterward, the cycle of measurement,
decision, and action starts again

M E A S U R E
C O L L E C T

P O R T D A T A

D E C I D E C A L C U L A T EA C T
U P D A T E

P O R T S

securecell.ch

A B

http://securecell.ch

A P P L I C A T I O N N O T E
February 2024

A similar guiding principle can help to develop a general structure to send and retrieve data
between Lucullus® and a programmed code. In a specified interval, the control algorithm might
perform the following steps (Figure 4B):

1. Data retrieval: Retrieve the data from the ports of interest, either as the
current values or the complete time series, based on the requirements
of the respective application

2. Calculation: Based on the retrieved data, features of interest are calcu-
lated, e.g., specific and volumetric rates or estimated metabolite con-
centrations

3. Port update: Based on collected or calculated data, Lucullus® ports are
updated, e.g., pH control setpoints, aeration rate, or pump settings

Researchers at Zürich University of Applied Sciences decided on a functional programming
approach, which means that the calculation and update of ports are both based on functions.
In contrast to an object-oriented paradigm, where code is structured into classes, this ap-
proach allows for easier testing as outputs are only dependent on inputs and not also on class
attributes and states. Additionally, this approach is more straightforward for users who are not
experienced with coding. In the following pseudocode example, we show how to implement a
feedback loop with dedicated functions for data collection and update of the ports:

while True:
 collected_data = collect_port_data(process, port_names, auth)
 calculated_data = update_calculations(collected_data, calculated_data)
 ports_to_update = update_ports(collected_data, calculated_data, auth)
 update_ports(process, ports_to_update, auth)
 sleep.wait(60)

Code 5: Code snippet showing how to implement a dedicated function for data collection and port update.

As many data science routines in Python are built around pandas DataFrames, the “collect_
port_data” function returns a DataFrame of the complete time series data. The used code is
provided on GitHub via the following link. Users should consider encapsulating frequently used
requests into easier-to-use functions or classes. This approach could enhance the efficiency
and maintainability of the codebase.

Results
The Lucullus® REST API and Python were used to automate an industrial scale-down model of
a lipid production process using a yeast strain. One challenging aspect of this production pro-
cess is the yeast’s metabolism which adapts to the changing process conditions. As a conse-
quence, the specific substrate uptake rate may fluctuate. Therefore, traditional feeding tech-
niques might lead to overfeeding when the feeding rate is not adjusted to the current biomass
concentration and maximum substrate uptake rate and can lead to reduced productivity or
even failed batches (Reichelt, et al., 2017). A simple and often applied solution to this problem
is a pulsed feeding strategy: After the yeasts have consumed the available sugar, the feed solu-
tion is pulsed into the reactor to increase substrate levels. The pulsed feed strategy is often
based solely on dissolved oxygen measurements (Paddon, 2013; Poontawee, 2020; Carsanba,
2021) but other process signals such as O2 or CO2 in the off-gas can also be used. This cycle of
subsequent pulsing and waiting for substrate depletion continues until the end of the process.
Therefore, there is no uncontrolled accumulation of the substrate inside the bioreactor.

securecell.ch

https://github.com/StefanHauer/lucullus_rest
http://securecell.ch

A P P L I C A T I O N N O T E
February 2024

Figure 5: The black line depicts the CO2 measurements in the off-gas (outliers removed and smoothed), while the blue line denotes
the state of the feed pump over time. The green and orange bars beneath the process signals show the evaluation of the process
state by the algorithm: While green means that substrate is still available in excess in the media, orange means that the substrate is
limited. The curves depict a typical process over time. After the initial batch phase, the first substrate limitation is reached, clearly
visible by a drop in the CO2 signal. Based on this indicator among several, the feed pump is turned on to increase the substrate con-
centration up to a predefined value. Afterward, the cycle of waiting and pulsing starts again.

Figure 5 depicts a typical production process controlled via the pulse-feed strategy. Once ev-
ery minute, thirty different measurement values are retrieved, such as pO2, O2, and CO2. After-
ward, the variables of interest are calculated such as oxygen uptake rate (OUR) and carbon di-
oxide evolution rate (CER) from O2 and CO2 measurements in the off-gas. When the oxygen
uptake rate drops, an algorithm interprets this as “substrate limitation” and pulses feed solu-
tion. This approach efficiently minimizes the duration of substrate limitation.

To keep feed pulses reproducible, the substrate level is always replenished to the same concentra-
tion after each feeding cycle. Consequently, the estimation of the reactor volume is important. The
reactor volume is estimated based on reactor balance values, feed balance values, and humidity in
the off-gas. By combining these parameters, changing reactor volumes based on feeding, acid and
base addition, sampling, and evaporation can be accounted for. Additionally, redundancy is used to
correct unforeseen events, such as items being put on a balance by accident.

Finally, based on the off-gas measurements of O2 and CO2 and the time passing from feeding
until substrate depletion, volumetric substrate uptake rates are estimated online. These pa-
rameters give operators additional information, allowing them to approximate both substrate
concentrations and the expected depletion of the latest substrate pulse.

Conclusion
By using the Lucullus® process information management system together with Python, a complex
yeast fermentation process for lipid production was fully automated. Advanced mathematical anal-
yses such as machine-learning-based event detection and soft sensing were performed in Phyton.
The process data collected in the overarching software Lucullus® was seamlessly transferred to
Phyton via the Lucullus® REST API interface.

As a consequence, operation time was reduced while at the same time, reproducibility was in-
creased, and process adaptation to a complex yeast metabolism was possible. In general, the use
of the REST API expands the capabilities of Lucullus® to all state-of-the-art machine learning algo-
rithms available and allows for easy online integration of already established data analysis routines.

securecell.ch

http://securecell.ch

SECURECELL AG

In der Luberzen 29
CH – 8902 Urdorf
+41 44 732 91 00
contact@securecell.ch

A P P L I C A T I O N N O T E
February 2024

© Copyright 2023 by Securecell AG. All rights reserved, including graphs and images.
Lucullus is a registered trademark of Securecell AG, Switzerland

Key results

With the functionality of the REST API, customers can integrate their data
analysis and control workflows seamlessly with Lucullus®. This saves time and
effort by working with the tools operators already know best

The power of advanced mathematical methods such as Kalman filters,
metabolic flux analysis, or machine learning can be leveraged online and help
make better-informed decisions

References

• (2020, May 8). Retrieved from RedHat:
https://www.redhat.com/en/topics/api/what-is-a-rest-api

• Carsanba, E. P. (2021). Fermentation strategies for
production of pharmaceutical terpenoids in engineered
yeast. Pharmaceuticals.

• Gupta, L. (2023, December 1). Retrieved from RESTful API:
https://restfulapi.net/

• Paddon, C. J. (2013). High-level semi-synthetic production
of the potent antimalarial artemisinin. Nature.

• Poontawee, R. &. (2020). Feeding strategies of two-stage
fed-batch cultivation processes for microbial lipid produc-
tion from sugarcane top hydrolysate and crude glycerol by
the oleaginous red yeast Rhodosporidiobolus fluvialis.
Microorganisms.

• Reichelt, W. N., Brillmann, M., Thurrold, P., Keil, P., Fricke,
J., & & Herwig, C. (2017). Physiological capacities decline
during induced bioprocesses leading to substrate accumu-
lation. Biotechnology journal.

mailto:contact%40securecell.ch?subject=

